专利摘要:
Various articles, such as footwear, apparel, athletic equipment, watchbands, and the like, and methods of forming those articles are presented. The articles are generally formed, in whole or in part, using rapid manufacturing techniques, such as laser sintering, stereolithography, solid deposition modeling, and the like. The use of rapid manufacturing allows for relatively economical and time efficient manufacture of customized articles. The articles may include one or more reinforcements configured to provide added durability to various regions of the articles. In addition, the articles may be formed from two or more materials in a single rapid manufacturing process. The rapid manufacturing additive fabrication technique may also include using of varying intensities of the laser to fuse material to form the articles.
公开号:EP3711621A1
申请号:EP20159387.8
申请日:2010-04-12
公开日:2020-09-23
发明作者:Kelly Jarvis
申请人:Nike Innovate CV USA;
IPC主号:B29C64-00
专利说明:
[0001] This application is a continuation-in-part of U.S. Patent Application No. 12/255,496, filed October 21, 2008 and entitled "Articles and Methods of Manufacture of Articles," which is incorporated herein by reference in its entirety. FIELD OF THE INVENTION
[0002] This invention relates generally to wearable articles and methods for the manufacture of these articles. More particularly, aspects of this invention relate to articles of footwear, and portions thereof, formed using rapid manufacturing additive fabrication techniques. BACKGROUND
[0003] Various manufacturing processes exist to form a variety of manufactured articles, such as articles of footwear, apparel, athletic equipment, and the like. For example, a midsole for an article of footwear may be manufactured using one of a number of commonly used molding techniques, such as injection molding, blow molding, compression molding, vacuum molding, and the like. These molding methods often require expensive molding equipment that allows little room for variation in the articles produced from the mold. For instance, any change to the design of the molded article generally would require the creation of a new mold. These manufacturing methods generally required a costly retooling anytime a change was made to the molded article design. In addition, molding processes often result in material waste as some material may be trimmed from the molded article in a post-manufacturing processing step.
[0004] In addition, conventional molding and article manufacturing methods often leave little or no ability to customize the article, such as an article of footwear, to the particular needs or desires of the wearer. That is, conventional articles of footwear, apparel, athletic equipment, etc. are often mass produced. While some articles are produced in varying sizes, articles are rarely manufactured to the specifications of one particular user.
[0005] Further, articles, such as articles of footwear, have regions prone to wear, such as flex regions, high stress regions, etc. Early wear in these regions can cut short the useful life of the product while other areas of the product continue to be capable of functioning at a high level in the intended manner. SUMMARY
[0006] The following presents a general summary of aspects of the invention in order to provide a basic understanding of the invention and various features of it This summary is not intended to limit the scope of the invention in any way, but it simply provides a general overview and context for the more detailed description that follows.
[0007] Aspects of this invention relate to articles, such as articles of footwear, that include reinforcing regions. The articles of footwear (or portions thereof) may be formed using conventional techniques and materials and/or the articles of footwear (or portions thereof) may be formed using rapid prototyping techniques. The reinforcing regions may be formed as a portion of the shoe during fabrication of the shoe or may be formed separately and connected to the shoe using known means of attachment, such as adhesives, stitching, mechanical fasteners, and the like.
[0008] Additional aspects of the invention relate to various midsole impact attenuating configurations that may be formed using one or more rapid manufacturing additive fabrication techniques. For instance, a midsole may include a plurality of apertures that correspond to projections on an insole. The midsole and insole combination provide additional impact attenuation and the arrangement of the apertures and projections may be customized based on the specifications, desires, etc. of the wearer. BRIEF DESCRIPTION OF THE DRAWINGS
[0009] A more complete understanding of the present invention and certain advantages thereof may be acquired by referring to the following detailed description in consideration with the accompanying drawings, in which:Figure 1 generally illustrates a side view of an example article of footwear formed according to this invention. Figure 2 is a side view of an example article of footwear having reinforced regions formed according to aspects of this invention. Figure 3 is a side view of another example article of footwear having reinforced regions formed according to aspects of this invention. Figure 4 is a side view of still another example article of footwear having reinforced regions formed according to aspects of this invention. Figure 5 is a side view of example article of footwear, portions of the article of footwear being formed from different materials according to aspects of this invention. Figures 6A and 6B are top and cross section views, respectively, of a midsole impact force attenuation system having corresponding apertures and projections and formed according to aspects of this invention. Figure 7 is an example airbag impact attenuating system formed according to aspects of this invention.
[0010] The reader is advised that the attached drawings are not necessarily drawn to scale. DETAILED DESCRIPTION
[0011] In the following description of various example structures in accordance with the invention, reference is made to the accompanying drawings, which form a part hereof and in which are shown by way of illustration various example articles and methods for manufacturing these articles, such as footwear, watchbands, apparel, athletic equipment, and the like. Additionally, it is to be understood that other specific arrangements of parts and structures may be utilized, and structural and functional modifications may be made without departing from the scope of the present invention. Also, while the terms "top," "bottom," "front," "back," "rear," "side," and the like may be used in this specification to describe various example features and elements of the invention, these terms are used herein as a matter of convenience, e.g., based on the example orientations shown in the figures and/or the orientations in typical use. Nothing in this specification should be construed as requiring a specific three dimensional or spatial orientation of structures in order to fall within the scope of this invention. Further, the invention will generally be described in accordance with an article of footwear and method of manufacturing an article of footwear. However, the invention may be used in production of a variety of articles. A. General Description of Articles, Such as Footwear, According to Examples of the Invention
[0012] In general, as described above, aspects of this invention relate to articles, such as footwear, watchbands, articles of apparel, athletic equipment, and the like. In addition, aspects of this invention relate to methods of manufacturing such articles. More detailed descriptions of aspects of this invention follow. 1. Example Articles, Such as Articles of Footwear, According to the Invention
[0013] One aspect of this invention relates to articles, such as articles of footwear. Such articles of footwear may include, for example, an upper and a sole structure engaged with the upper. In at least some examples, the upper and/or sole structure may be formed using rapid manufacturing techniques, such as laser sintering, solid deposition modeling, stereolithography, and the like. The upper may include reinforcement portions configured to provide additional durability, wear resistance, etc., in areas of the upper that may be prone to tearing, wear, flex, and the like. The reinforcement portions may be formed of conventional materials and manufacturing processes, for instance, non-rapid manufacturing additive fabrication techniques, or they may be formed using one or more rapid manufacturing additive fabrication techniques. The reinforcement portions may be connected to the upper using known means of attachment, such as stitching, adhesives, and the like.
[0014] In other examples, portions of the rapid manufactured upper and/or sole structure of the article of footwear may be formed of different materials to provide different mechanical characteristics to different regions of the shoe. For instance, flexible regions may be formed of a first material having properties associated with flexibility to enable flexing of the shoe, while supportive regions, such as an ankle region, may be formed of a second material having properties associated with stiffness and support. In at least some products in accordance with this invention, the various portions of the shoe may be formed in a single rapid manufacturing process.
[0015] In still other examples, portions of the rapid manufactured upper and/or sole structure of the article of footwear may be formed from material fused with varying laser intensities in order to provide different mechanical characteristics to different regions of the shoe. For instance, regions in which greater hardness is desired, such as an eyelet region, may receive a higher intensity laser than regions in which flexibility is desired, such as the toe region. Laser radiation intensity may be varied, for example, by altering the laser power, the laser scanning speed, or the laser beam spot size.
[0016] Specific examples of the invention are described in more detail below. The reader should understand that these specific examples are set forth merely to illustrate examples of the invention, and they should not be construed as limiting the invention. B. Specific Examples of the Invention
[0017] Figure 1 generally illustrates an example article of footwear 100 formed according to aspects of the invention. The article of footwear 100 includes an upper 102 and a sole structure 104. For purposes of reference in the following material, footwear 100 may be divided into three general regions: a forefoot or toe region 111, a midfoot region 112, and a heel region 113, as illustrated in Figure 1. In addition, footwear 100 includes two sides: lateral side 114 and medial side (not shown). Lateral side 114 is positioned to extend along the lateral (outside) side of the foot and generally passes through each of regions 111-113. Similarly, the medial side is positioned to extend along an opposite medial (inside) side of the foot and generally passes through each of regions 111-113. Regions 111-113 and medial and lateral sides are not intended to demarcate precise areas of footwear 100. Rather, regions 111-113 and medial and lateral sides are intended to represent general areas of footwear 100 that provide a frame of reference during the following discussion.
[0018] Generally, upper 102 is secured to sole structure 104 and defines a cavity for receiving a foot. Access to the cavity is provided by an ankle opening 106 located in heel region 113. A lace 108 extends through various apertures in upper 102. Lace 108 may be utilized in a conventional manner to selectively increase a size of ankle opening 106 and to modify certain dimensions of upper 102, particularly girth, to accommodate feet with varying dimensions. Various materials are suitable for use in manufacturing a conventional upper. Those materials used in conventional uppers include leather, synthetic leather, rubber, textiles, and polymer foams, for example, that are stitched or adhesively bonded together. The specific materials utilized for upper 102 may be selected to impart wear-resistance, flexibility, air-permeability, moisture control, and comfort. In some conventional arrangements, different materials may be incorporated into different areas of upper 102 in order to impart specific properties to those areas. Furthermore, the materials may be layered in order to provide a combination of properties to specific areas. In accordance with aspects of this invention, the upper 102 may be formed using a rapid manufacturing additive fabrication technique from suitable materials, such as a thermoplastic elastomer, and may include various reinforcements formed using conventional methods, as well as by using rapid manufacturing additive fabrication techniques, as will be discussed more fully below.
[0019] Sole structure 104 is secured to a lower surface of upper 102 and includes an outsole 120 and a midsole 122. Outsole 120 forms a ground-engaging surface of sole structure 104 and is formed of a durable, wear-resistant material. Conventional sole structures may be formed of rubber that is textured to enhance traction. In accordance with aspects of this invention, the outsole 120 and/or midsole 122 may be formed, using a rapid manufacturing additive fabrication technique, of a thermoplastic elastomer, as will be discussed more fully below. In some embodiments, outsole 120 may be integrally formed with midsole 122 or may be a lower surface of midsole 122. Some conventional midsoles are primarily formed of a polymer foam material, such as polyurethane or ethylvinylacetate, that forms a foam core type impact force attenuation system in the midsole 122. Other conventional midsoles may include a column type midsole impact force attenuation system, such as the one shown in Figure 1. Additional midsole impact force attenuation types are available for use in conventional midsoles, including an air bag type impact force attenuation system. These various impact force attenuation systems, including column type, foam core, air bag, and the like (or at least portions thereof), may also be manufactured using rapid manufacturing techniques and associated materials in accordance with aspects of this invention, as will be discussed more fully below.
[0020] Conventional articles of footwear are generally formed from a variety of different types of materials and a variety of different manufacturing processes. In some arrangements, the upper and sole structure are generally formed as separate pieces and then are joined in a post-manufacture processing step. In forming the upper, a plurality of upper portions may be formed or cut, using conventional methods, and then are connected to each other. The upper portions may be connected by any known means such as stitching, adhesives, mechanical fasteners, and the like. This process often generates a substantial amount of waste associated with trimming each of the individual pieces of the upper to be the correct shape and size for that particular upper or portion of the upper.
[0021] In addition to forming articles of footwear using conventional manufacturing techniques, the articles of footwear, or portions thereof, may be formed using rapid manufacturing additive fabrication techniques, such as laser sintering, stereolithography, solid deposition modeling, and the like. Rapid manufacturing fabrication techniques involve creating a three-dimensional design in a data file, such as a Computer Aided Design (CAD) file, and building the object of the three-dimensional design in an automated layer by layer process. Essentially, the fabrication equipment reads the three-dimensional design from the data file and lays down successive layers of powder, liquid or sheet material to build the three dimensional object. The layers are joined together by the fabrication equipment, for instance, a high powered laser may be used, to form the three dimensional object of the design. Such rapid manufacturing techniques are generally known in the art.
[0022] One particular process for forming articles that may be used in accordance with aspects described herein is laser sintering. This process involves creating a three-dimensional design in a data file, such as a CAD file. The laser sintering fabrication equipment reads the CAD file and forms the three-dimensional object of the design, such as an upper or portion of an upper for an article of footwear, using a high powered laser to fuse powders or small particles of plastic, metal or ceramic. The laser selectively fuses powdered material by scanning cross-sections generated from a CAD file or a scan of the part on the surface of a powder bed. After each cross-section is scanned, the powder bed is lowered by one layer thickness, a new layer of material is applied on top, and the process is repeated until the part is completed. Laser sintering, and other rapid manufacturing processes are generally known in the art. One example system is found in U.S. Patent No. 5,156,697 to Bourell et al. and is incorporated herein by reference.
[0023] Articles of footwear formed using rapid manufacturing additive fabrication techniques, and some formed using conventional methods, often require reinforcement at areas that experience flexing or heavy wear or stress. Accordingly, reinforcement portions may be formed to prolong the usable life of the article of footwear by reinforcing the region prone to weakening, tearing, etc. For instance, FIG. 2 illustrates one example article of footwear 200 including reinforcement portions 202, 204. As shown, the article of footwear 200 generally includes an upper 206 forming a void for receiving a foot of a wearer. In addition, the shoe 200 includes a sole structure 208 that may include a midsole 210 and an outsole 212. In some examples, the sole structure 208 may be formed using conventional methods, such as molding, etc. In other arrangements, the sole structure 208 may be formed using one or more rapid manufacturing additive fabrication techniques. Forming the sole structure 208 using rapid manufacturing techniques may permit complex shapes to be formed, some of which may be impossible to form using conventional manufacturing techniques. Also, forming the sole structure 208 using rapid manufacturing techniques may better allow for customization of the sole structure 208, because the foot of a wearer may be scanned and the sole structure 208 may be manufactured based on the scan of the wearer's foot.
[0024] The upper 206 may also be formed using conventional manufacturing techniques or rapid manufacturing additive fabrication techniques. The article of footwear 200 of FIG. 2 also includes a plurality of eyelets 203. In some arrangements, the upper 206 formed using rapid manufacturing techniques may benefit from reinforcement of the eyelet regions of the article 200. Accordingly, eyelet reinforcement portions 202 may be formed and connected to the upper 206 using known means of attachment, such as stitching, adhesives, mechanical fasteners, and the like. For instance, eyelet reinforcement 202 may be formed using rapid manufacturing techniques and connected to the eyelet region 203 of the upper 206 in order to reinforce the eyelets 203 to accommodate a lace or other closure system (not shown). In another example, the eyelets reinforcements 202 may be formed from conventional material (e.g., plastic, metal, leather, textile, etc.) and/or from conventional manufacturing techniques such as molding, extrusion, etc. The eyelet reinforcements 202 may then be connected to the eyelets 203 formed in the upper 206 as a post-manufacturing processing step using known means of attachment, such as stitching, adhesives, mechanical fasteners, crimped metal ring structures, mating snap fit components on the reinforcement and the upper, and the like.
[0025] The article of footwear 200 of FIG. 2 also includes a reinforcement 204 configured at a toe region of the article of footwear 200. In some arrangements, the toe region may be considered a high wear region due to a wearer's toe pushing on the inner side of the toe region during use. Accordingly, a regional reinforcement structure, such as reinforcement 204, may be positioned in that region to aid in preventing holes, tearing, etc. The toe region reinforcement 204 may be formed from conventional materials, such as textile, leather, and the like, or it may be formed using a rapid manufacturing additive fabrication technique and associated materials. Using a rapid manufacturing technique to form the reinforcement 204 may permit variations in the thickness of the reinforcement in various regions of the reinforcement. For instance, the reinforcement may be thinner at the rear of the toe region (i.e., closer to the midfoot region of the shoe) rather than at the front of the toe region to provide additional support at the front of the shoe.
[0026] Further, the shape, size, thickness, etc. of the reinforcement 204 may be customized for a particular wearer. That is, the gait or step cycle and characteristics of the wearer may be studied in order to determine where additional reinforcement may be needed and the reinforcement 204 may be constructed to those specifications using one or more rapid manufacturing additive fabrication techniques or, in some arrangements, conventional manufacturing techniques. As one more specific example, for persons that tend to over-pronate during their steps, additional stiffness and/or wear reinforcement may be provided in the lateral heel area of the sole.
[0027] The toe region reinforcement 204 may be connected to the upper 206 using known means of attachment, such as adhesives, stitching, mechanical fasteners, mating snap fit components on the reinforcement and the upper, and the like.
[0028] Additionally or alternatively, the vamp forefoot region includes a flex region that may also benefit from reinforcement. For instance, FIG. 3 illustrates an article of footwear 300 having a reinforcement 302 extending along this flex region of the upper 306. The reinforcement 302 may be formed of conventional materials and/or conventional manufacturing techniques, or may be formed using a rapid manufacturing additive fabrication technique and associated materials. The reinforcement 302 may be formed as part of the initial rapid manufacturing process to fabricate the article of footwear 300, or it may be formed as a separate piece that may be connected or attached to the upper 306 using known means of attachment, such as adhesives, stitching, mechanical fasteners, mating snap fit components on the reinforcement and the upper, and the like. The reinforcement 302 may be formed to permit flexing of the article of footwear 300 in that region, while providing additional durability and wear resistance in the high stress area of the shoe 300 (for example, when jumping, crouching, etc.).
[0029] FIG. 4 illustrates yet another article of footwear 400 having a reinforced region 402. As with the arrangements above, the upper 406 and sole structure 408 of the article of footwear 400 may be formed using conventional materials and conventional manufacturing techniques, or they may be formed using one or more rapid manufacturing additive fabrication techniques and associated materials. However, the collar region 402 of the article of footwear 400 is often a region that receives heavy wear and may be likely to tear, wear down, etc. Accordingly, reinforcement in the collar region 402 may prolong the usable life of the shoe 400.
[0030] In some arrangements, the upper 406 of an article of footwear 400 may be formed using one or more rapid manufacturing additive fabrication techniques. A collar reinforcement 404 may be formed separately (either from conventional materials and processes or rapid manufacturing materials and processes) and connected to the upper 406 to provide additional wear resistance. Additionally, because the collar region 402 may be an area that can rub and cause irritation on the wearer's skin, the collar reinforcement 404 also may include a soft foam, fabric, or other comfort-enhancing material. The collar reinforcement 404 may be attached to the upper 406 using known means of attachment including stitching, adhesives, mechanical fasteners, and the like. In some arrangements, the collar reinforcement 404 may include a snap fit mechanism that mates with a corresponding snap fit mechanism configured in the collar region 402 of the upper 406.
[0031] In addition to providing added strength, wear resistance, comfort, etc., the reinforcements described above may also add various design elements to the article of footwear. For instance, the reinforcements may include one or more colors or color schemes to complement the color or colors used in the upper or other portions of the shoe. Additionally or alternatively, the reinforcements may be shaped to provide a complimentary design element to the shoe structure. In some arrangements, the reinforcements may be shaped to include a logo (such as a team logo, mascot, etc.) or a company trademark. In some arrangements, the properties of one region may transition into the properties of another region.
[0032] Further, resin (colored or uncolored) may be brushed, painted, sprayed, etc. onto various regions of an article of footwear formed using rapid manufacturing techniques to provide additional aesthetic enhancement, as well as additional durability to regions of high wear and/or stress. The resin may be brushed onto the shoe after the shoe has been formed, as a post-fabrication processing step. The process may include resins of varying colors, etc. in order to enhance the appearance of the shoe while providing added durability to various regions of the shoe or to the entire shoe, as desired. Various resins that may be used and techniques for applying the resin are discussed more fully in U.S. Patent Application No. 12/255,496 , entitled "Articles and Methods of Manufacture of Articles" to which this application claims priority and which is incorporated herein by reference in its entirety.
[0033] In addition to the reinforcement portions and techniques described above, an article of footwear may be formed using more than one material during a rapid manufacturing additive fabrication process. For instance, the article of footwear may be formed from a single design file including the design, specifications, etc. of the shoe. During rapid manufacturing of the shoe, using a single type of rapid manufacturing process, multiple materials may be used to provide different characteristics or properties to different regions of the shoe.
[0034] For instance, the article of footwear 500 in FIG. 5 may be formed using one or more rapid manufacturing additive fabrication techniques. The layer-by-layer process used to fabricate the shoe 500 may include different materials for different regions of the shoe 500. For instance, additional flexibility may be desired in a toe region 502 of the shoe 500, while additional stiffness may be desired in the lateral side 504 and medial side (not shown) of the upper 506 being formed. Materials providing these differing properties may be used in the same rapid manufacturing additive fabrication technique. For instance, a layer of the powder being fused may include a first material in one area or portion of the article and a second material, different from the first material, in another area or portion of the article. Accordingly, two or more different materials may be used to form, from a single rapid manufacturing process, the shoe 500 having the desired properties. In some examples, portions of the article of footwear may be formed using a thermoplastic elastomer, such as DuraForm Flex plastic manufactured and sold by 3D Systems, or other similar materials, such as manufactured by Advanced Laser Materials, LLC (e.g., ALM Flex) and Evonk Industries (e.g., Evonik Soft Touch), various powders, any generally plastic-like material, and the like.
[0035] In still other arrangements, the rapid manufacturing additive fabrication technique used to manufacturing the article may include a laser having varying intensities, such that higher or lower intensities may be used when forming various regions of the article of footwear. For instance, with further reference to FIG. 5, the toe region 502 may be fused using a laser of lower intensity in order to maintain the flexibility of the material in that region. However, a higher intensity laser may be used to fuse the material of the lateral side 504 and medial side of the upper 506 in order to provide additional stiffness and support in those regions. This arrangement using lasers of varying intensities in different regions of the foot may be performed using various known rapid manufacturing additive fabrication techniques. Further, various lasers may be used to manufacture the articles. In some arrangements, a 50 watt carbon dioxide DEOS Class IV laser may be used.
[0036] In other arrangements, regions in which additional hardening would be desired, such as the eyelet region (203 of FIG. 2), may be fused with a higher intensity laser than other regions of the shoe. This may aid in reinforcing the eyelet region of the article.
[0037] Varying the intensity of the laser may permit further customization of the article of footwear. For instance, varying the intensity of the laser used in fabricating various regions of the shoe may alter the density, stiffness, etc. of the shoe such that the article being formed may be "tuned" to desired specifications. These specifications may be unique to one or more identified users. This arrangement provides the ability to alter the properties of the article for each shoe fabricated, if desired, without requiring costly molds to be manufactured in order to produce the articles.
[0038] Figures 6A and 6B illustrate yet another arrangement of a portion of an article of footwear that may be formed using one or more rapid manufacturing additive fabrication techniques. Figure 6A illustrates a top view of a midsole 600 of an article of footwear. The midsole 600 generally includes a plurality of apertures 602 distributed throughout a top surface 604. The apertures 602 may extend through a portion of the midsole 600 or may extend completely through the midsole 600 from the top surface 604 to a bottom surface 606. Figure 6B is a cross section of the midsole 600 of FIG. 6A taken along line A-A. The figure illustrates one example in which the apertures 602 extend partially through the midsole 600. The midsole 600 may be formed using one or more rapid manufacturing additive fabrication techniques. Using these techniques will allow any number, shape, arrangement, size, etc. of apertures to be formed in the midsole 600. For instance, larger or smaller apertures may be formed, apertures of varying shapes including square, rectangular, triangular, trapezoidal, hexagonal, etc. may be formed, the pattern of apertures may vary depending on the region of the midsole, etc.
[0039] Figure 6B further includes an insole member 610. The insole member 610 includes a base 612 and a plurality of projections 614. The projections 614 are formed of a shape and size to correspond to the apertures 602 formed in the midsole 600. The insole member 610 and projections 614 may provide additional impact attenuation, support, comfort, etc. for the wearer. The insole member 610 may be formed using a rapid manufacturing additive fabrication technique or by conventional techniques.
[0040] In some arrangements, the size, arrangement, etc. of the apertures 602 and corresponding projections 614 may be customized to a particular user. For instance, a scan of a wearer's foot may be taken and additional impact attenuation may be provided in various regions based on the results of the scan.
[0041] In still other arrangements, rapid manufacturing additive fabrication techniques may be used to form inserts for airbags to be used in midsole impact attenuation systems. For instance, a midsole may include an inflated airbag formed of conventional materials. The airbag may include an insert to aid in maintaining the desired shape of the airbag. For instance, the insert may be attached to the airbag at various locations in the bag interior to help control the shape of the airbag when it is inflated. The use of rapid manufacturing to fabricate the insert allows the insert to be customized to the needs and/or desires of the wearer, as well as to any desired size, shape, etc. in order to maintain the desired shape of the airbag. Figure 7 illustrates one example airbag 700 including an insert 702 formed using one or more rapid manufacturing additive fabrication techniques. The insert 702 may be sized, shaped, configured, etc. based on a user's desires, specifications based on features of a user's foot, etc.
[0042] In still other arrangements, one or more structures arranged in the midsole to hold or fasten the airbag in place may be formed using one or more rapid manufacturing additive fabrication techniques. For example, brackets, clips, grooves, frames, pockets, or other structures for securing the airbag that may be difficult or impossible to manufacture using conventional methods of manufacture may be formed using rapid manufacturing.
[0043] In still other arrangements, various parts may be manufactured using rapid fabrication additive techniques inside of other parts formed from the same process. For instance, a small part may be manufactured inside a hollow cavity in a larger part to save time and materials. This process would be similar to Russian dolls with smaller dolls nesting inside larger ones. The CAD file created may include the design for the small part and the larger part and the part may be manufactured in one process.
[0044] Further still, some articles manufactured using rapid fabrication additive techniques may be formed in a collapsed condition in order to conserve space. For instance, similar to a paper bag that is stored collapsed along various creases and fold lines, the articles may be formed using rapid manufacturing in a collapsed condition then expanded upon use.
[0045] For example, an article of footwear may be formed of a plurality of interlocking rings. The rings may vary in size in different regions of the article of footwear or may be the same size throughout. During manufacture of the article, the rings may be formed in a collapsed condition. That is, the rings may be formed in a stacked formation to produce an article having a very compact shape. However, the rings may be expanded upon opening or expansion of the article to provide the article in an expanded and/or usable condition.
[0046] Although the above arrangements have been described for use in manufacturing articles of footwear, aspects of the invention may be used with a variety of articles including apparel, athletic equipment, such as hockey sticks, shin guards, lacrosse sticks, shoulder pads, etc., watch bands, jewelry, eye glasses, and the like.
[0047] The arrangements described above allow for customization of articles based on a user's specification, desires, etc. In addition, the use of rapid manufacturing fabrication techniques to form various articles minimizes material waste associated with manufacturing the article. When manufacturing conventional articles, material is often trimmed from the article in order to obtain the desired size or shape of the article. In the method described herein, the three-dimensional design file can be created having the particular desired dimensions of the article. The article is then built to those particular dimensions. No additional material is created that may need to be removed to obtain the desired size and shape of the article. CONCLUSION
[0048] While the invention has been described in detail in terms of specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations and permutations of the above described systems and methods. Thus, the spirit and scope of the invention should be construed broadly as set forth in the appended claims. Clauses
[0049] 1. An article of footwear, comprising: a sole structure including a midsole and an outsole; and an upper connected to the sole structure and forming a void for receiving a foot of a wearer, the upper being formed using a rapid manufacturing additive fabrication technique and including at least one reinforced region, the at least one reinforced region including a reinforcement formed of conventional materials. 2. The article of footwear of clause 1, wherein the reinforcement is formed from non-rapid manufacturing additive fabrication techniques.3. The article of footwear of clause 1, wherein the reinforcement is arranged at a flex region at a vamp forefoot region of the upper.4. The article of footwear of clause 3, wherein the reinforcement is formed of at least one of textile and leather.5. The article of footwear of clause 3, wherein the reinforcement is connected to the upper with at least one of stitching, mechanical fasteners, and adhesives.6. The article of footwear of clause 1, wherein the reinforcement includes an eyelet reinforcement.7. The article of footwear of clause 6, wherein the eyelet reinforcement is formed of at least one of textile, leather, plastic, and metal.8. The article of footwear of clause 1, wherein the reinforcement includes a collar region reinforcement.9. An article of footwear, comprising: a sole structure including a midsole and an outsole; and an upper connected to the sole structure and forming a void for receiving a foot of a wearer, the upper being formed using a first rapid manufacturing additive fabrication technique and including at least one reinforced region, the at least one reinforced region including a reinforcement formed using a second rapid manufacturing additive fabrication technique. 10. The article of footwear of clause 9, wherein the first and second rapid manufacturing additive fabrication techniques are the same rapid manufacturing additive fabrication techniques.11. The article of footwear of clause 9, wherein the first and second rapid manufacturing additive fabrication techniques are different rapid manufacturing additive fabrication techniques.12. The article of footwear of clause 9, wherein the reinforcement is formed as a separate portion from the article of footwear.13. The article of footwear of clause 12, wherein the reinforcement is connected to the upper with at least one of stitching, mechanical fasteners, and adhesives.14. The article of footwear of clause 9, wherein the reinforcement includes an eyelet reinforcement.15. The article of footwear of clause 9, wherein the reinforcement includes a collar region reinforcement.16. An article of footwear, comprising: an upper configured to receive a foot of a wearer; a sole structure, connected to the upper and including: an outsole configured to contact a surface, and a midsole, the midsole including a plurality of apertures formed in a top surface; and an insole, the insole being configured to mate with the midsole and including a plurality of projections configured to correspond to the apertures formed in the midsole; wherein the midsole and insole are formed using a rapid manufacturing additive fabrication technique. 17. The article of footwear of clause 16, wherein the upper is formed using a rapid manufacturing additive fabrication technique.18. The article of footwear of clause 16, wherein the apertures extend partially through the midsole.19. The article of footwear of clause 16, wherein the apertures extend through the midsole from a top surface to a bottom surface of the midsole.20. The article of footwear of clause 16, wherein the apertures and projections are configured to provide impact attenuation.21. The article of footwear of clause 16, wherein the configuration of the apertures and projections is based on specifications of a user's foot.22. The article of footwear of clause 16, wherein the size of the apertures and projections is based on specifications of a user's foot.23. The article of footwear of clause 16, wherein the upper further includes at least one reinforcement portion.24. The article of footwear of clause 23, wherein the at least one reinforcement portion is located in a toe region of the upper.25. The article of footwear of clause 23, wherein the at least one reinforcement portion is located in a collar region of the upper.26. The article of footwear of clause 23, wherein the at least one reinforcement portion is located in an eyelet region of the upper.27. The article of footwear of clause 23, wherein the reinforcement portion is formed using a non-rapid manufacturing additive fabrication technique.28. The article of footwear of clause 23, wherein the reinforcement portion is formed using a rapid manufacturing additive fabrication technique.29. An article of footwear, comprising: an upper configured to receive a foot of a wearer; a sole structure, connected to the upper and including: an outsole configured to contact a surface, and a midsole, the midsole further including an airbag configured to provide impact attenuation and a structural insert configured within the airbag and configured to provide support to the foot of the wearer; wherein the structural insert is formed using a rapid manufacturing additive fabrication technique. 30. The article of footwear of clause 29, wherein the airbag is formed of conventional airbag materials.31. The article of footwear of clause 29, wherein the shape of the structural insert is based on specifications of the wearer's foot.32. The article of footwear of clause 29, wherein the configuration of the structural insert is based on specifications of the wearer's foot.33. The article of footwear of clause 29, wherein the upper further includes at least one reinforcement portion.34. The article of footwear of clause 33, wherein the reinforcement portion is formed using a non-rapid manufacturing additive fabrication technique.35. The article of footwear of clause 33, wherein the reinforcement portion is formed using a rapid manufacturing additive fabrication technique.36. An article of footwear, comprising: an upper configured to receive a foot of a wearer; and a sole structure, connected to the upper and including: an outsole configured to contact a surface, a midsole, the midsole including a plurality of apertures formed in a top surface thereof, and an insole, the insole being configured to mate with the midsole and including a plurality of projections configured to correspond to the plurality of apertures formed in the midsole, wherein the midsole and insole are formed using a rapid manufacturing additive fabrication technique.37. The article of footwear of clause 36, wherein the upper is formed using a rapid manufacturing additive fabrication technique.38. The article of footwear of clause 36, wherein the apertures extend partially through the midsole.39. The article of footwear of clause 36, wherein the apertures extend through the midsole from a top surface to a bottom surface of the midsole.40. The article of footwear of clause 36, wherein the apertures and projections are configured to provide impact attenuation.41. The article of footwear of clause 36, wherein a configuration of the apertures and projections is based on specifications of a user's foot.42. The article of footwear of clause 36, wherein a size of the apertures and projections is based on specifications of a user's foot.43. The article of footwear of clause 36, wherein the upper further includes at least one reinforcement portion.44. The article of footwear of clause 43, wherein the at least one reinforcement portion is located in a toe region of the upper, in a collar region of the upper, or in an eyelet region of the upper.45. The article of footwear of clause 43, wherein the reinforcement portion is formed using a non-rapid manufacturing additive fabrication technique.46. The article of footwear of clause 43, wherein the reinforcement portion is formed using a rapid manufacturing additive fabrication technique.47. The article of footwear of clause 36, wherein a size or arrangement of the apertures and the corresponding projections are customized to a particular user.48. The article of footwear of clause 36, wherein a size or arrangement of the apertures and the corresponding projections are customized to a particular user based on a scan of the particular user's foot.49. A method of forming an article of footwear, comprising: forming an upper configured to receive a foot of a wearer; and connecting a sole structure to the upper, wherein the sole structure includes: an outsole configured to contact a surface, a midsole, the midsole including a plurality of apertures formed in a top surface thereof, and an insole, the insole being configured to mate with the midsole and including a plurality of projections configured to correspond to the plurality of apertures formed in the midsole, wherein the midsole and insole are formed using a rapid manufacturing additive fabrication technique.50. The method of clause 49, further including scanning a particular user's foot, wherein a size or arrangement of the apertures and the corresponding projections are customized to the particular user based on the scan of the particular user's foot.
权利要求:
Claims (15)
[0001] An article of footwear (200, 300, 400), comprising:an upper (206, 306, 406) forming a void for receiving a foot of a wearer, the upper including:
(a) a first portion formed using a solid deposition modeling technique, and
(b) a first reinforcement portion (202, 204, 302, 402) connected with the first portion of the upper (206, 306, 406), the first reinforcement portion (202. 204, 302, 402) being formed from a material selected from plastic, metal, leather, and textile materials.
[0002] The article of footwear (200, 300, 400) of claim 1, wherein the first portion of the upper (206, 306, 406) is formed of a thermoplastic elastomer material, and/orwherein the upper (206, 306, 406) is formed using a solid deposition modeling technique.
[0003] The article of footwear (200, 300, 400) of any one of claims 1 to 2, further comprising a sole structure (104, 208, 408) engaged with the upper (206, 306, 406).
[0004] The article of footwear (200, 300, 400) of any one of claims 1 to 3, wherein the first reinforcement portion (202, 204, 302, 402) is arranged at a vamp forefoot region of the upper (206, 306, 406).
[0005] The article of footwear of any one of claims 1 to 4, wherein the first reinforcement portion (202, 204, 302, 402) includes textile or leather materials.
[0006] The article of footwear (200, 300, 400) of any one of claims 1 to 5, wherein the first reinforcement portion (202, 204, 302, 402) is connected to the first portion of the upper (206, 306, 406) with stitching or adhesives.
[0007] The article of footwear (200, 300, 400) of any one of claims 1 to 6, wherein the first reinforcement portion (202, 204, 302, 402) includes an eyelet reinforcement (202), wherein the eyelet reinforcement (202) includes textile, metal, or plastic.
[0008] The article of footwear (200, 300, 400) of any one of claims 1 to 7, wherein the first reinforcement portion (202, 204, 302, 402) includes a collar region (402) or a toe reinforcement region (204).
[0009] A method of manufacturing an article of footwear (200, 300, 400), comprising:
forming a first portion of an upper (206, 306, 406) via a solid deposition modeling technique;
providing a second portion of the upper as a separate piece from the first portion of the upper (206, 306, 406), the second portion forming a first reinforcement portion (202, 204, 302, 402) and being formed from a material selected from plastic, metal, leather, and textile materials; and
attaching the second portion of the upper (202, 204, 302, 402) to the first portion of the upper.
[0010] The method of manufacturing of claim 9, further comprising forming the first portion of the upper (206, 306, 406) by depositing a thermoplastic elastomer material;and/or further comprising forming the upper (206, 306, 406) via a solid deposition modeling technique.
[0011] The method of any one of claims 9 to 10, wherein the first reinforcement portion (202, 204, 302, 402) is arranged at a vamp forefoot region of the upper (206, 306, 406), and/or wherein the first reinforcement portion (202, 204, 302, 402) includes textile or leather materials.
[0012] The method of any one of claims 9 to 11, further comprising providing a sole structure (104, 208, 408) and engaging the sole structure (104, 208, 408) with the upper (206, 306, 406).
[0013] The method of any one of claims 9 to 11, wherein the first reinforcement portion (202, 204, 302, 402) is connected to the first portion of the upper with stitching or adhesives, and/or wherein the first reinforcement portion (202, 204, 302, 402) includes an eyelet reinforcement (202), wherein the eyelet reinforcement includes textile, metal, or plastic materials.
[0014] The method of any one of claims 9 to 13, wherein the first reinforcement portion (202, 204, 302, 402) includes a collar region (402) or a toe reinforcement region (204).
[0015] The method of any one of claims 9 to 14, wherein the upper further comprises a second reinforcement portion (202, 204, 302, 402) coupled with the upper (206, 306, 406) in a collar region of the upper.
类似技术:
公开号 | 公开日 | 专利标题
US10952489B2|2021-03-23|Sports shoes and methods for manufacturing and recycling of sports shoes
JP2019080988A|2019-05-30|Soles for sport shoes
CN107148230B|2020-08-21|Sole structure with bladder for footwear and method of making same
US10231511B2|2019-03-19|Interwoven lattice structure for cushioning member
US10897957B2|2021-01-26|Sole plate assembly and method of making
US10716358B2|2020-07-21|Soles for sports shoes
US9833036B2|2017-12-05|Skate
US20190297995A1|2019-10-03|System and method for customizing footwear
JP6764988B2|2020-10-07|Last system for articles with braided elements
EP3243637B1|2020-01-01|Method of fabrication of an article of footwear using 3d printing
US10575584B2|2020-03-03|Customized shoe textures and shoe portions
EP2838708B1|2017-12-13|Direct printing to fabric
ES2632753T3|2017-09-15|Footwear and related manufacturing method
US9089999B2|2015-07-28|Method and apparatus for manufacturing components used for the manufacture of articles
EP3636095A1|2020-04-15|Article of footwear with dispensed components
EP3357367B1|2020-12-16|Contoured fluid-filled chamber with a tensile member
US6499233B1|2002-12-31|Sport footwear construction
US8479416B2|2013-07-09|Footwear component for an article of footwear
US7875229B2|2011-01-25|Method of making a skate boot
US7954259B2|2011-06-07|Sole element for a shoe
CN104411197B|2017-06-30|For the footwear sole construction of article of footwear
CN102123623B|2012-11-07|Fluid-filled chamber with a textile tensile member
US7290357B2|2007-11-06|Article of footwear with an articulated sole structure
DE69229504T3|2006-03-02|SHOE SOLE ELEMENT
CN105050441B|2017-10-10|Footwear sole construction and article of footwear with the light midsole member with protection element
同族专利:
公开号 | 公开日
JP2014087685A|2014-05-15|
JP2014076668A|2014-05-01|
JP5452710B2|2014-03-26|
US20120117825A9|2012-05-17|
US20180036944A1|2018-02-08|
CN102448340A|2012-05-09|
US9788594B2|2017-10-17|
EP2429325A2|2012-03-21|
EP2429325B1|2016-02-10|
US20120117826A1|2012-05-17|
BRPI1011877A2|2016-03-29|
WO2010126708A2|2010-11-04|
WO2010126708A3|2011-03-03|
EP2997842A1|2016-03-23|
EP3001925A1|2016-04-06|
EP3001925B1|2017-11-01|
EP2995213B1|2019-10-09|
EP2995213A1|2016-03-16|
CN105962530A|2016-09-28|
KR20120047848A|2012-05-14|
JP2012525289A|2012-10-22|
US20100095556A1|2010-04-22|
US9795181B2|2017-10-24|
EP2997842B1|2020-02-26|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
法律状态:
2020-08-21| PUAI| Public reference made under article 153(3) epc to a published international application that has entered the european phase|Free format text: ORIGINAL CODE: 0009012 |
2020-08-21| STAA| Information on the status of an ep patent application or granted ep patent|Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
2020-09-23| AK| Designated contracting states|Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
2020-09-23| AC| Divisional application: reference to earlier application|Ref document number: 2997842 Country of ref document: EP Kind code of ref document: P Ref document number: 2429325 Country of ref document: EP Kind code of ref document: P |
2021-03-26| STAA| Information on the status of an ep patent application or granted ep patent|Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
2021-04-28| 17P| Request for examination filed|Effective date: 20210323 |
2021-04-28| RBV| Designated contracting states (corrected)|Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
2021-06-25| STAA| Information on the status of an ep patent application or granted ep patent|Free format text: STATUS: EXAMINATION IS IN PROGRESS |
2021-07-28| 17Q| First examination report despatched|Effective date: 20210624 |
优先权:
申请号 | 申请日 | 专利标题
[返回顶部]